Chem. Ber. 112, 1189 – 1192 (1979)

Über Schwefeloxiddifluoridimide des Kohlenstoffs

Konrad Horn, Helmut Schachner 1) und Wolfgang Sundermeyer*

Anorganisch-Chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 270, D-6900 Heidelberg 1

Eingegangen am 8. Juni 1978

Die Synthese von $FC(NSOF_2)_3$ (3) aus $FCBr_3$ und $Hg(NSOF_2)_2$ (6) sowie aus Guanidin und OSF_4 wird beschrieben. $C(NSOF_2)_4$ (4) erhält man sowohl durch Reaktion von CBr_4 mit 6 als auch, was besonders interessant ist, aus $F_2C(NSOF_2)_2$ (2) mit $B(NSOF_2)_3$. Für 2 und $OC(NSOF_2)_2$ (5) werden neue Darstellungsmöglichkeiten angegeben.

Sulfur Oxide Difluoride Imides of Carbon

The synthesis of $FC(NSOF_2)_3$ (3) from $FCBr_3$ and $Hg(NSOF_2)_2$ (6) as well as from guanidine and OSF_4 is described. $C(NSOF_2)_4$ (4) is obtained by the reaction of CBr_4 with 6 and especially from $F_2C(NSOF_2)_2$ (2) and $B(NSOF_2)_3$. For 2 and $OC(NSOF_2)_2$ (5) new methods of preparation were found.

In der Reihe $F_xC(NSOF_2)_{4-x}$ sind bisher nur die Verbindungen $F_3C-NSOF_2$ (1) ²⁾ und $F_2C(NSOF_2)_2$ (2) ³⁾ beschrieben worden. Die Verbindungen $FC(NSOF_2)_3$ (3) und $C(NSOF_2)_4$ (4) konnten nunmehr von uns synthetisiert werden. Darüber hinaus fanden wir eine weitere Darstellungsmöglichkeit für 2 und für das ebenfalls schon bekannte $OC(NSOF_2)_2$ (5)⁴⁾.

Die von uns früher beschriebene Reaktion von $Hg(NSOF_2)_2$ (6) mit Elementhalogeniden ⁵⁾ ließ sich auch auf die Halogenverbindungen des Kohlenstoffs (X = Cl, Br, 1) anwenden (Gleichung 1). Allerdings entsteht 4 bei der Reaktion von geschmolzenem CBr_4 mit 6 bei 110°C nur in massenspektroskopisch nachweisbaren Mengen (GC-MS-Kopplung). Weder bei der Umsetzung von CJ_4 mit 6 bei 50°C oder von CCl_4 bzw. CBr_4 mit 6 bei 145°C im Autoklaven noch bei dem Versuch, die genannten Halogenmethane mit 6 in Lösungsmitteln (CH_2Cl_2 , $CFCl_3$, C_6H_6 , n- C_6F_{14}) umzusetzen, erhielten wir 4.

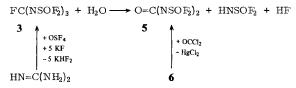
© Verlag Chemie, GmbH, D-6940 Weinheim, 1979

Stets entstand die offenbar stabilste Verbindung der Reihe, nämlich 2, als Hauptprodukt neben wenig 3 und Spuren 1, welche spektroskopisch (IR, NMR, MS) nachgewiesen wurden. Diese Reaktion optimiert, stellt eine neue Synthesemöglichkeit für 2 dar (82% Ausb.). Bei der thermischen Zersetzung von 4 entsteht 2 unter gleichzeitiger Bildung der massenspektrometrisch qualitativ nachgewiesenen Oligomeren (NSOF)_n (n = 3, 4, 6).

Die Synthese von 4 gelingt unter schonenden Bedingungen aus 2 mit B(NSOF₂)₃⁶), das mit den - durch die vom Stickstoff herrührende hohe Elektronendichte am Kohlenstoff - lockerer gebundenen Fluoratomen in 2 reagiert. Bortrifluorid wird bei tiefer Temperatur abgezogen. Als Nebenprodukte entstehen zähflüssige polymere Verbindungen. Die IR-Absorptionen von 4 lassen sich gut in die Reihe der Homologen 1-3 einordnen (vgl. Tab. 1), und die Äquivalenz der Fluoratome wird durch ein Singulett bei $\delta=-46$ (CFCl₃ int. Standard) im 19 F-NMR-Spektrum belegt (Tab. 2). Diese chemische Verschiebung liegt im relativ engen Bereich zwischen CF $_3$ CO(NSOF $_2$) mit $\delta=-43.8^{5)}$ und NC-NSOF $_2$ mit $-48.5^{2)}$ für die Fluoratome am Schwefel von C-NSOF $_2$ -Verbindungen.

1	2	3	4	versuchsweise Zuordnung	
1460 s	1440 vs	1434 vs	1430 vs	v_{as}	N = S = O
1336 vs	1322 s	1290 s	1274 st	v_s	N = S = O
1215 sh	1156 m	1080 m	_	V_{as}	C - F
1180 vs	1114 s	1040 sh	1035 m	V_{as}	C-N
_	885 sh	885 w	882 w	$v_{\rm s}$	C-N
860 vs	860 s	859 m	858 m	V_{as}	S-F
759 w	818 m	815 m	810 w	V_s	S-F

Tab. 1. IR-Spektren von F_xC(NSOF₂)_{4-x} [cm⁻¹]. 10-cm-Gasküvette mit KBr-Fenster


Tab. 2. ¹⁹F-NMR-Spektren von F_xC(NSOF₂)_{4-x} (CFCl₃ ext. Standard, 25°C)

Verb.	δ_{S-F}	Multipl.	$\delta_{\mathbf{C}-\mathbf{F}}$	Multipl.	$J_{ ext{F-F}}[ext{Hz}]$
1	-47.3	Quartett	+48.3	Triplett	8
2	-46.4	Triplett	+40.9	Quintett	9.5
3	-46.3	Dublett	+35.2	Septett	9.8
4	-46.0	Singulett	fehlt	_	_

Allen Kohlenstoff-Schwefeloxiddifluoridimiden ist gemeinsam, daß als stärkstes Signal im Massenspektrum M-100 unter Abspaltung einer $NSOF_2$ -Gruppe auftritt. Ähnlich wie bei CCl_4 tritt bei 4 kein Molekül-Ion auf, doch konnte trotz des geringen Dampfdruckes eine in der Größenordnung richtige Molmasse nach Regnault bestimmt werden, die neben der Elementaranalyse und den spektroskopischen Daten die Existenz von 4 sichert.

Die gezielte Darstellung von 3 gelang uns neben dessen bereits erwähnter Bildung bei der Reaktion von CX₄ mit 6 zunächst aus CFBr₃ mit 6 bei 50°C mit geringer Ausbeute (3%). Die Umsetzung ist auch nach drei Tagen nicht vollständig, und eine Temperatur-

erhöhung begünstigt sofort den Zerfall zu 2 und 1. Unumgesetztes FCBr $_3$ (Sdp. $106\,^{\circ}$ C) läßt sich bei $-35\,^{\circ}$ C im Hochvakuum abziehen. Der Siedepunkt von 3 muß also höher liegen. Die Substanz ist extrem hydrolyseempfindlich und reagiert unter Bildung von 5.

Wir fanden eine weitere Darstellungsmöglichkeit für 3 in der Reaktion von Guanidin mit OSF₄ bei 110°C im Autoklaven.

Die IR-Absorptionen von 3 lassen sich gut in die Reihe der Homologen einordnen (vgl. Tab. 1), und das 19 F-NMR-Spektrum zeigt typische Signale in Form eines Dubletts bei $\delta = -46.3$ (CF₃Cl ext. Standard) aus der Kopplung der Fluoratome am Schwefel mit dem Fluoratom am Kohlenstoff sowie durch dessen Kopplung mit den sechs äquivalenten Fluoratomen am Schwefel ein Septett bei $\delta = +35.2$ (CFCl₃ ext. Standard).

Bei allen Syntheseversuchen für 4 entsteht 5 als Nebenprodukt. Da bei einer Hydrolyse HNSOF₂ in äquivalenten Mengen entstehen müßte, dies aber nicht beobachtet wurde, muß man sich die Bildung von 5 durch intramolekulare Umlagerung aus 4 entstanden denken. Nicht auszuschließen ist auch die langsame Reaktion von 4 und 3 mit dem Sauerstoff aus Glas unter Bildung von 5 und SiF₄.

Analog zu den bisherigen Reaktionen mit 6 gelang uns die Synthese von 5 mit 68% Ausbeute aus Phosgen bei 120°C. Die physikalischen und spektroskopischen Daten stimmen mit den in der Literatur 4 angegebenen überein.

Herrn Dr. R. Geist danken wir für die GC-MS-Messungen. Die Deutsche Forschungsgemeinschaft und der Fonds der Chemischen Industrie unterstützten dankenswerterweise diese Untersuchungen.

Experimenteller Teil

NMR-Spektren: C-60 HL, Japan Electron Optics Laboratories Co., Ltd. — Massenspektren: CH 7 Varian MAT und GC-Kopplung. — IR-Spektren: Perkin Elmer 457. — Elementaranalysen: Mikroanalytisches Labor Beller (Göttingen). — Schmelzpunktbestimmung nach Stock.

N,N',N''',N'''-Kohlenstofftetrakis(schwefeloxiddifluoridimid) (4): In eine sorgfältig ausgeheizte Kirsche werden an der Hochvakuumapparatur 3.75 g (0.015 mol) 2 und 3.11 g (0.01 mol) B(NSOF₂)₃ einkondensiert. Dann wird 3 h bei $-78\,^{\circ}$ C gerührt. Man läßt auftauen und zieht bei $-15\,^{\circ}$ C BF₃ ab. Die Fraktion von 0 bis 25 °C wird in ein Kernresonanzröhrchen überkondensiert, in welchem sich zwei flüssige Phasen bilden. Die Phasentrennung erfolgt unter Inertgas; die obere wasserklare Flüssigkeit besteht aus spektroskopisch reinem 4, die untere zähflüssige Phase aus C(NSOF)_x(NSOF₂)₄ und OC(NSOF)_x(NSOF₂)₂. Zurück bleibt eine wachsartige polymere Substanz, die im IR-Spektrum breite NSOF-Banden zeigt (Film zwischen KBr-Platten). Ausb. 0.37 g (6%) 4, Sdp. 63 °C/13 Torr, Schmp. $-9 \pm 1\,^{\circ}$ C.

IR und 19 F-NMR siehe Tabb. 1 und 2. – MS (70 eV): m/e = 312 (100%; M $^{+}$ – NSOF₂); 112 (1.2%, CNSOF₂ $^{+}$); 86 (1.2%, SOF₂ $^{+}$); 67 (1.8%, SOF $^{+}$).

CF₈N₄O₄S₄ (412.3) Ber. C 2.91 F 36.86 N 13.59 S 31.11 Gef. C 2.85 F 36.40 N 13.69 S 30.94 Fluormethylidin-N,N',N''-tris(schwefeloxiddifluoridimid) (3)

a) In einem V4A-Reaktionsgefäß werden unter kräftigem Rühren 5.41 g (0.02 mol) 6 vorgelegt und 3 h bei Raumtemp. i. Hochvak. evakuiert. Darauf kondensiert man 12.02 g (0.03 mol) frisch destilliertes, farbloses CFBr₃ und erwärmt 3 Tage auf 50°C. Die flüchtigen Produkte werden in eine Glasfalle kondensiert und die Nebenprodukte 2, 1 und CFBr₃ von –80 bis –40°C abgezogen. Zurück bleibt 3 als wasserklare Flüssigkeit, die noch mit übersublimiertem, nicht verbrauchtem 6 verunreinigt ist. Nach Zentrifugieren und Dekantieren unter Inertgas bleiben 0.15 g (2.3%) reines 3 zurück.

b) 24.4 g (0.42 mol) KF (im Vakuumtrockenschrank 3 Tage bei 180°C getrocknet) und 5.02 g (0.085 mol) Guanidin werden in einem 300-ml-V4A-Stahlautoklaven vorgelegt und 32.25 g (0.26 mol) SOF₄ aufkondensiert. Nach dem Auftauen wird 3 Tage unter Rühren auf 110°C erhitzt. Die Fraktion von −80 bis 0°C enthält nahezu reines SOF₄, während in der Fraktion von 0 bis 50°C 3 überwiegt. Bei Steigerung der Temperatur entsteht hauptsächlich 2. Die Umsetzung ist gering, da KF an der Oberfläche zu großen Klumpen zusammenbackt und Guanidin mit einschließt.

IR und ¹⁹F-NMR siehe Tab. 1 und 2. – MS (70 eV): $m/e = 231 (100\%, M^+ - NSOF_2)$; 105 (47.5%, SOF₃⁺); 86 (21.7%, SOF₂⁺); 67 (25.8%, SOF⁺); 59 (22%, FCN₂⁻).

Difluormethylen-N,N'-bis(schwefeloxiddifluoridimid) (2): In einem 100-ml-V4A-Autoklaven werden auf 15 g (0.037 mol) 6 3.08 g (0.02 mol) CCl₄ kondensiert. Nach dem Auftauen wird 20 h auf 145 °C erhitzt. Ausb. 4.1 g (82%, bezogen auf CCl₄); Sdp. 74 °C/760 Torr. — IR und ¹⁹F-NMR siehe Tabellen und Lit. ³⁾.

N,N'-Carbonylbis(schwefeloxiddifluoridimid) (5): In einem 150-ml-V4A-Fingerautoklaven werden auf 10 g (0.025 mol) 6 2.47 g (0.025 mol) COCl₂ kondensiert. Nach dem Auftauen wird bei 120°C 40 h gerührt. Die flüchtigen Reaktionsprodukte werden abgezogen und bei 14 Torr destilliert. Ausb. 3.9 g (68%); Sdp. 118.5°C/746 Torr. – 1R, NMR und MS stimmen mit Lit. 4) überein.

Literatur

- ¹⁾ Diplomarbeit H. Schachner, Univ. Heidelberg 1978. Vorversuche in Staatsexamensarbeit K. Horn, Univ. Heidelberg 1977.
- ²⁾ M. Lustig und J. K. Ruff, Inorg. Nucl. Chem. Lett. 3, 531 (1967).
- 3) O. Glemser und S. P. v. Halasz, Z. Naturforsch., Teil B 23, 743 (1968).
- 4) O. Glemser, R. Mews und S. P. v. Halasz, Inorg. Nucl. Chem. Lett. 5, 321 (1969).
- ⁵⁾ Z. B. Chr. Jäckh, A. Roland und W. Sundermeyer, Chem. Ber. 108, 2580 (1975).
- 6) A. Roland und W. Sundermeyer, Z. Naturforsch., Teil B 27, 1102 (1972).

[224/78]